STEREOSELEKTIVE SYNTHESE VON

 $(\pm)-4\alpha$ -DESMETHYL-AMBROX UND $(\pm)-4\alpha$, 8-DIDESMETHYL-AMBROX

H. Wolf und U. Mätzel+)

Institut für Organische Chemie der Technischen Universität, D-3300 Braunschweig +) Gesellschaft für Biotechnologische Forschung mbH, D3300 Braunschweig-Stöckheim

E.-J. Brunke und E. Klein

DRAGOCO GmbH, Forschungsabteilung, D-3450 Holzminden

<u>Zusammenfassung:</u> Die aus $\frac{3}{2} + \frac{1}{4} \frac{a}{2} \frac{b}{2}$ über $\frac{5a}{2b}$ dargestellten Dien-ole $\frac{11a}{11b}$ mit terminaler Etherfunktion als internem Nucleophil wurden im Zweiphasensystem stereoselektiv zu $\frac{12a}{12b}$ cyclisiert. Hydrierung ergab die Titelverbindungen $\frac{2a}{2b}$.

Die tricyclischen Ether Ambrox $(\frac{1}{2a})$ und Isoambrox $(\frac{1}{2b})^{1}$ weisen den charakteristischen Geruch der grauen Ambra auf 2a,b . $\frac{1}{2a}$ findet als Riechstoff vom Ambra-Typus seit langem Verwendung und wurde als Komponente ethanolischer Ambra-Infusionen nachgewiesen, in denen es durch Autoxidation des Triterpens Ambrein, des geruchlosen Hauptbestandteils der Ambra, entsteht 3). Partialsynthetisch wird $\frac{1}{2a}$ durch oxidativen Abbau der Diterpene Sclareol und Manool gewonnen 2a,4 . Nach Ohloff 2a,b ; 5) weisen Ambra-Riechstoffe und solche vom Ambra-Typus 2a eine enge Strukturbeziehung zu dem in 6 -Position zur Ringverknüpfung axial-substituierten trans-Dekalin-Ringsystem auf ("1,2,4-Triaxial-Regel der Geruchsauslösung"). Dieses stereochemische Postulat erfüllt auch das Isoambrox (1b) mit axialer Etherfunktion 2b .

Als Beitrag zum Problem der Beziehung zwischen Molekülstruktur und olfaktorischen Eigenschaften berichten wir nachstehend über die Synthese von 4α -Desmethyl-ambrox ($\underline{2}\underline{a}$) und 4α ,8-Didesmethyl-ambrox ($\underline{2}\underline{b}$), die <u>beide</u> über einen intensiven und typischen Ambrageruch verfügen. Nach dem Prinzip der kationischen Cyclisierung von Polyolefinen werden aus den monocyclischen Edukten $\underline{1}\underline{1}\underline{a}/\underline{1}\underline{1}\underline{b}$ stereoselektiv die tricyclischen Ether $\underline{1}\underline{2}\underline{a}/\underline{1}\underline{2}\underline{b}$ gebildet, die zu $\underline{2}\underline{a}/\underline{2}\underline{b}$ hydriert werden. Das Synthesekonzept ermöglicht durch Variation der Edukte auch die Einführung anderer Substituenten an C-4 und C-8.

Zur Darstellung der Cyclisierungsedukte wurde Hagemannester(3)mit den Homoallylbromiden 4a/4b alkyliert. (NaH/Toluol/kat. Zusatz von KJ). Verseifung und Decarboxylierung (ethanol. NaOH) der Rohprodukte lieferten nach chromatographischer Reinigung die Cyclohexenon-Derivate 5a/5b in Ausbeuten von jeweils 60 %.

Für die Synthese der Homoallylbromide $\frac{4a}{4b}$ wurden die Cyclopropylketone $\frac{6a}{4}$ und $\frac{6b}{4}$ zu den ß-Ketocarbonsäureestern $\frac{7a}{2}$ (83 %) und $\frac{7b}{2}$ (76 %) carbethoxy liert (Diethylcarbonat/NaH/ Δ). Hieraus wurden durch Reduktion (NaBH₄/Ethanol/O°C) die Cyclopropylcarbinole $\frac{8a}{4}$ (95 %) erhalten. Cyclopropanringöffnung nach dem Julia-Verfahren lieferte als Hauptprodukte die E-konfigurierten Olefine. Bei $\frac{8a}{4}$ erfolgte die Umlagerung (ZnBr₂/48 % HBr/- 20 bis O°C) weitgehend stereoselektiv und ergab das Homoallylbromid $\frac{9a}{4}$ (73 %, Reinheit nach GC^{10a}) 95 %. - NMR, CDCl₃: δ = 2.65, m; 3.08, "d", 7 Hz; 3.45, t, 7 Hz; 5.70 ppm, m). Unter den gleichen Reaktionsbedingungen wurde aus $\frac{8b}{4}$ das trisubstituierte Olefin $\frac{9b}{4}$ nur zu 25 % gebildet. Nach einem modifizierten Verfahren (Ether-Acetonitril, ZnBr₂/Kollidin, PBr₃, - 70°C) $\frac{11}{4}$ konnte nach chromatographischer Reinigung $\frac{9b}{4}$ mit einer Ausbeute von 65 % erhalten werden (Reinheit nach $\frac{1}{4}$ CCC $\frac{1}{4}$). Reduktion von $\frac{9a}{4}$ (LiAlH₄/Ether/O°C) zu $\frac{10a}{4}$ (85 %) und Einführung der Schutz gruppe durch Umsetzung mit Ethylvinylether (kat. H₂SO₄, 20°C) ergaben quanti-

tativ 4a bzw. 4b, die zur Alkylierung von 3 verwendet wurden.

Die aus $\frac{5a}{5b}$ mit Methyllithium in Ether erhaltenen unbeständigen Cyclohexenole $\frac{11a}{11b}$ wurden als Rohprodukte im Zweiphasensystem (absol. HCOOH/Cyclohexan/30 min Rühren bei 20° C) zu den tricyclischen Ethern $\frac{12a}{12b}$ cyclisiert. Hierbei reagiert mit hoher Selektivität die Etherfunktion als internes Nucleophil, da die bicyclischen C-8-Formiate als alternative Cyclisierungsprodukte nur in Spuren (GC-MS^{10b}) nachgewiesen werden konnten. Die tricyclischen Ether wurden aus der Cyclohexan-Phase als farblose öle in Ausbeuten (bezogen auf $\frac{5a}{5b}$) von 86 % $\frac{12a}{2}$ (Reinheit nach $\frac{5a}{5a}$) und 79 % $\frac{12b}{2}$ (Reinheit nach $\frac{5a}{5a}$) erhalten. $\frac{12a}{2}$ und $\frac{12b}{2}$ enthielten zu 4 % bzw. 9 % je ein Stereoisomeres (analoges MS-Fragmentierungsmuster), bei dem es sich um das Cyclisierungsprodukt des bei der Cyclopropanringöffnung als Nebenprodukt gebildeten Z-konfigurierten Olefins handeln dürfte. Hydrierung (Pto₂/AcOH) von $\frac{12a}{2}$ 12b lieferte nach Reinigung durch Chromatographie an $\frac{5a}{2}$ 4ROOH) von $\frac{12a}{2}$ 12b lieferte nach Reinigung durch Chromatographie an $\frac{5a}{2}$ 4ROOH) von $\frac{12a}{2}$ 4B lieferte nach Reinigung durch Chromatographie an $\frac{5a}{2}$ 4ROOH) von $\frac{12a}{2}$ 4B lieferte nach Reinigung durch Chromatographie an $\frac{5a}{2}$ 4ROOH) von $\frac{12a}{2}$ 4B lieferte nach Reinigung durch Chromatographie an $\frac{5a}{2}$ 4ROOH) von $\frac{12a}{2}$ 4B lieferte nach Reinigung durch Chromatographie an $\frac{5a}{2}$ 4ROOH) von $\frac{12a}{2}$ 4B lieferte nach Reinigung durch Chromatographie an $\frac{5a}{2}$ 4ROOH) von $\frac{12a}{2}$ 4B lieferte nach Reinigung durch Chromatographie an $\frac{5a}{2}$ 4ROOH) von $\frac{12a}{2}$ 4B lieferte nach Reinigung durch Chromatographie an $\frac{5a}{2}$ 4ROOH) von $\frac{12a}{2}$ 4B lieferte nach Reinigung durch Chromatographie an SiO₂/AgNO₃98 %) bzw. $\frac{4a}{2}$ 8-Didesmethyl-ambrox ($\frac{2a}{2}$ 5 Reinheit nach GC^{10a}99 %) als farblose öle.

Tabelle: 1 H- und 13 C-NMR-Werte ($\boldsymbol{\delta}$ [ppm], CDCl₃, TMS (und C 6 F 6) als innerer Standard) von $\underline{1}\underline{a}$, $\underline{2}\underline{a}$, \underline{b} und $\underline{1}\underline{2}\underline{a}$, \underline{b} 13_C(22.6 MHz) <u>¹н</u> (90 мнz) 4-CH₃ 0.90, d J = 7 Hz0.91s 0.88.5 J = 7 Hz14.8 8-CH₃ 1.10,s 1.19,s 21.2 1.09.s 21.1 8-H 3.31,"t"d 3.49,"t"d J = 4 HzJ = 4.5HzJ = 10.5Hz= 10 Hz10-CH₃ 0.94,s0.84,s15.2 15.3 3.74-3.89,"dd" 64.9 3.66-J = 6 Hz3.96,m 4.00,m

Bindungsschließung bei der Cyclisierung zu $\frac{12a}{42b}$ sollte konzertiert unter trans-Addition an der E-konfigurierten Doppelbindung und Bildung der kinetisch-kontrollierten Produkte erfolgen. Die sich daraus ergebende relative Konfiguration (8R, 9R, 10R) der tricyclischen Ether wird durch die NMR-Spektren (Tab.) bestätigt: Bei $\frac{12a}{42b}$ und $\frac{2a}{42b}$ treten für das jeweils axiale 8-Ha "t"d-Multipletts bei $\frac{1}{44b}$ = 3.49(3.31)ppm auf mit J = 10(10.5) Hz(9-Ha,7-Ha)und J = 4.5

(4)Hz(7-H_e), diese Kopplungskonstanten sind nicht vereinbar mit den thermodynamisch stabileren 11)8,9-cis-Isomeren (rel. 8(S)-Konfiguration). Im 13 C-NMR-Spektrum des Hydrierungsprodukts $\underline{2b}$ entsprechen die $\mathbf{6}$ -Werte für 8-CH₃ und 10-CH₃ denen in Ambrox($\underline{1a}$)bekannter Konfiguration 13), womit auch die aus sterischen Gründen zu erwartende Hydrierung von der α -Seite bestätigt wird.

Aufgrund der olfaktorischen Beurteilung 14 besitzt 4α -Desmethyl-ambrox ($\underline{2}\underline{a}$) eine Ambranote ähnlicher Geruchsqualität und -Intensität wie $\underline{1}\underline{a}$, jedoch mit animalischer Nebennote (Tonkin-Moschus), während 4α ,8-Didesmethyl-ambrox ($\underline{2}\underline{b}$), das <u>nicht</u> der Triaxial-Regel 2a , b ; 5 entspricht, eine trocken-staubige Ambranote etwas geringerer Intensität aufweist. Es ist zu berücksichtigen, daß bei racem. Riechstoffen wie $\underline{2}\underline{a}$ und $\underline{2}\underline{b}$ das überlagerte Geruchsbild der Enantiomeren auftreten sollte 15).

Literatur, Anmerkungen

- S. Torii, K. Uneyama und H. Ichimura, J. Org. Chem. 43, 4680 (1978) und dort zitierte Literatur.
- 2.a)G. Ohloff in Fortschr. Chem. Forsch. Bd. 12/2, S. 185, Springer-Verlag Berlin 1969. 2b) G. Ohloff in Gustation and Olfaction (G. Ohloff und A.F. Thomas), S.'178, Academic Press, London 1971.
- 3. B.D. Mookherjee und R.R. Patel, Abstracts of the VII Internat. Congress of Essential Oils, Kyoto 1977.
- 4. R.C. Cambie, K.N. Joblin und A.F. Preston, Aust. J. Chem. 24, 2365 (1971).
- G. Ohloff, W. Giersch, K.H. Schulte-Elte und Ch. Vial, Helv. Chim. Acta 59, 1140 (1976).
- W.S. Johnson, Angew. Chem. <u>88</u>, 33 (1976). Angew. Chem. Internat. Edit. <u>88</u>, 9 (1976).
- 7. W. Cannon, R.C. Ellis und J.R. Leal, Org. Synth. 31, 74 (1951).
- 8. M. Julia, S. Julia und Y. Noel, Bull. Soc. Chim. France, 1708 (1960).
- 9. S.F. Brady, M.A. Ilton und W.S. Johnson, J. Amer. Chem. Soc. <u>90</u>, 2882 (1968).
- 10a.Hewlett-Packard HP 5711 A3, 25 m Glaskapillare WG 11, Temperaturprogramm 60-220°C (4°C/min). b) Hewlett-Packard HP 5992 50 m Glaskapillare WG 11, Temperaturprogramm 60-220°C (4°C/min). 70 eV.
- 11. M.B. Gravestock, W.S. Johnson, B.E. McCarry, R.J. Parry und B.E. Ratcliffe, J. Amer. Chem. Soc. 100, 4274 (1978).
- 12. E.-J. Brunke und H. Wolf, Tetrahedron 34, 707 (1978).
- 13. M. Hinder und M. Stoll, Helv. Chim. Acta 36, 1995 (1953). W. Klyne und J. Buckingham, Atlas of Stereochemistry, Bd. I, S. 108, Chapman and Hall, London 1978.
- 14. Wir danken Herrn R. Knollmann (Fa. DRAGOCO) für die olfaktorischen Bestimmungen.
- 15. A.K. Dey und H.R. Wolf, Helv. Chim. Acta 61, 1004 (1978).

Wir danken den Herren Drs. Kutschan und L. Ernst für die Messung der NMR-Spektren.